A key driver for business intelligence adoption: Embedded analytics.

Standard

Did you know most business intelligence (BI) solutions are under-utilized? Your BI solution might be one of them — I definitely had some BI solutions that were not as widely used as I had imagined! Don’t believe me? Take a guess at “number of active users” for your BI solution and then look up that number by using your BI server logs. Invariably, this is Shocking to most BI project leaders = Their BI solution is not as widely used as they had imagined! Ok, so what can you do? Let me share one key driver to drive business intelligence adoption: Embedded analytics.

Embedded analytics

#1: what is Embedded analytics? 

Embedded analytics is a technology practice to integrate analytics inside software applications. In the context of this post, it means integrating BI reports/dashboards in most commonly used apps inside your organization.

#2: why should you care? 

You should care because it increase your business intelligence adoption. I’ve seen x2 gains in number of active users just by embedding analytics. if you want to understand why it’s effective at driving adoption, here’s my interpretation:

Change is hard. You know that — then why do you ask your business users to “change” their workflow and come to your BI solution to access the data that they need. Let’s consider an alternative — put data left, right & center of their workflow!

Example: You are working with a team that spends most of their time on a CRM system then consider putting your reports & dashboards inside the CRM system and not asking them to do this:

Open a new tab > Enter your BI tool URL > Enter User Name > Enter Password > Oops wrong password > Enter password again > Ok, I am in > Search for the Report > Oops, not this one! > Ok go back and search again > Open report > loading…1….2….3…. > Ok, here’s the report!  

You see, that’s painful! Here’s an alternative user experience with embedded analytics:

They are in their favorite CRM system! And see a nice little report embedded inside their system and they can click on that report to open that report for deeper analysis in your BI solution.

How easy* was that?

*Some quick notes from the field:

1) it’s easy for users but It’s not easy to implement! But well — there’s ROI if you invest your resources in setting up embedded analytics correctly!

2) Don’t forget context! example: if a user is in their CRM system and is looking at one of their problem customers — then wouldn’t it be great if your reports would display key data points filtered for that customer! So context. Very important!

3) Start small. Implement embedded analytics for one subject area (e.g. customer analysis) for one business team inside one app! Learn from that. Adjust according to your specific needs & company culture AND if that works — then do a broad roll out!

Now, think of all the places you can embed analytics in your organization. Give your users an easy way to get access to the reports. Don’t build it and wait for them to come to you — go embed your analytics anywhere and everywhere it makes sense!

#3: Stepping back

Other than Embedded analytics — you need to take a look at providing user support and training as well…And continue monitoring usage! (if you’re trying to spread data driven culture via your BI solution then you should “eat at your own restaurant” and base your adoption efforts on your usage numbers and not guesses!)

Conclusion:

In this post, I shared why embedded analytics can be a key drive for driving business intelligence adoption.

Advertisements

Five actions that you can take if you measure your analytics/business-intelligence solution usage:

Standard

Summary:

In this post, I am going to share five actions that you can take you if measure your analytics/business-intelligence solution usage:

Five actions!

I’ll highly encourage business stakeholders & IT managers to consider measuring the usage of their analytics/business-intelligence solutions. From a technical standpoint, it shouldn’t be a difficult problem since most of the analytics & business intelligence tools will give you user activity logs. So, what’s the benefit of measuring usage? Well, in short, it’s like “eating at your restaurant” – if you’re trying to spread culture of data driven decision-making in your organization, you need to lead by example! And one way you can achieve that is by building a tiny Business Intelligence solution that measures user activity on top of your analytics/business-intelligence solution. if you decide to build that then here are five actions that you can take based on your usage activity:

Let’s broadly classify them in two main categories: Pro-active & Reactive actions.

A. Pro-active actions:

1. Identify “Top” users and get qualitative feedback from them. Understand why they find it valuable & find a way to spread their story to others in the organization

2. Reach out to users who were once active users but lately haven’t logged into the system. Figure out why they stopped using the system.

3. Reach out to inactive users who have never used the system. it’s easy to find inactive users by comparing your user-list with the usage activity logs. Once you have done that, Figure out the root-cause – a. Lack of Training/Documentation b. unfriendly/hard-to-use system c. difficult to navigate; And once you have identified the root-cause, fix it!

B. Reactive actions:

4. If the usage trend if going down then alert your business stakeholders about it and find the root-cause to fix it?

Possible root causes:

– IT System Failure? Fix: make sure that problem in the system never happens again!

– Lack of documentation/Training? Fix: Increase # of training session & documentation

downward trend line chart

5. It’s a great way to prove ROI of an analytics/business-intelligence solution and it can help you secure sponsorship for your future projects!

Conclusion:

In this post, you saw five actions that you can take if you measure your usage activity of your analytics/business-intelligene solution.

I hope this was helpful! I had mentioned user training in this article and so if you want to learn a little bit more about it, here are a couple of my posts:

1. http://parasdoshi.com/2014/05/05/presented-at-sqlsat-305-dallas-ba-edition/

2. http://parasdoshi.com/2014/05/07/how-to-train-your-users-to-create-their-own-business-intelligence-reports-5-of-5-post-training/